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Abstract-In this paper, conpled-mode equations for general bi.
anisotropic wavegnides with perfect electrically conducting (PEC)

walls are studied and a set of rigorous expressions is obtained.
The features of these equations are discussed and applications
to circular/rectangular Faraday cbiral and chiral waveguides are
demonstrated. Comparisons between Faraday chiral, chiral, and
ferrite-filled waveguides are also given.

I. INTRODUCTION

A NEW CLASS of waveguides, known as chirowaveguides

exhibit novel and unique properties, and they have been

studied intensively in recent years. In spite of numerous

papers published on this subject [1]-[8], [14], [15], only

very few cases have been reported in detail. Moreover, the

newly suggested Faraday chiral [16] and general bi-anisotropic

waveguides are more complicated to calculate in spite of the

fact that they have many interesting properties and potential

applications. In reference [24], calculation of circular open

chirowaveguides is made by using coupling mode expansion

method. Their results are valid only for small chirality cases

since the formulas used in [24] are derived with perturbation

approximation of small chiral admittance. In this paper, we

give a rigorous study of the coupled-mode equations of general

bi-anisotropic waveguides with PEC walls including chiral and

Faraday chiral waveguides in special cases. It is shown by

sample calculations that this rigorous method is very effective

to calculate results of both circular and rectangular chiral

and Faraday chiral waveguides with various values of chiral

admittance and off-diagonal component of permeability tensor.

A comparison is also made between chirowaveguides and

ferrite-filled waveguides.

II. THEORY

The electromagnetic field components of a metal wave-

guide, filled with bi-anisotropic materials may be expressed

as follows [17]:
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where u, w are orthogonal coordinates of a point in a typical

cross-section of the waveguide, z is the axis of the waveguide,

H(m) and ~[n] are the Hertz scalar functions of the TM and

TE modes of the same waveguide filled with homogeneous

isotropic achiral materials, hl and h2 are the metrical coeffi-

cients, the V’s and 1’s correspond to the voltages and currents

in the coupled-mode waveguide. In fact, (1) is the expansion

of the six field components separately into the summation

of the eigenmode components of the same waveguide filled

with homogeneous isotropic achiral material (There are six

different sets of coefficients V(n), V[nl, . . . in the expansion.)

Of course, there are many possible ways to expand the six

field components. Nevertheless, the above expansion gives a

clear physical meaning and it makes the field calculations more

convenient. The proposed method was successfully used and

validated both theoretically and experimentally in the study of

ferrite waveguides [17], [18]. Here we shall extend it to the

study of bi-anisotropic waveguides, including chirowaveguides

and Faraday chiral waveguides presented as special cases. A

detailed discussion of expansion (1) is given in Appendix A.

From (1) and Maxwell’s equations it is found that [17]

+ X(m)w,(m)

dl[m] //( )8H[.] + ~ % ds
—=jw

dz
–DU—

h2&u “ hl~u

+ x[rn]~z,[m] (2)

and

qm] = –jw
/!
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I(m) = –.jti H D.rI(m)ds (3)

fOr 71L = (), ],’2, . .

where the surface integrals are performed across the cross-

section of the waveguide.

The variation of the field components in the axial direction
~ is given by exp( —,jf?z). The constitutive relations in a

most general bi-anisotropic medium for an assumed time

dependence of the form exp(jut) are given by [19]

2=;Z+;2

L3. :2+;G (4)

In principle, we may follow [17] to substitute (4) into (2),

(3) and obtain all the transfer coefficients of the generalized

coupled mode equations Z’s, Y’s, and T’s which relate
dI(rn) dI[m] a

~(.), ~1.I, v(~) and VI.] to their derivatives ~, —dz ‘ dz
dJ’[ml

and —dz
To this end we have to substitute the expressions of B, and

D: (which in general case are dependent on all the six field

components Eu, Eu, E,. HU, H., and H.) into (3); solve for

v:,[~, and ~,,[,~1 and eliminate them in (2). This is really a
very complicated task. since the two infinite series of v.,(~)

and 1., [ml are coupled to each other. Therefore, the following

procedure is proposed to make our calculation practical. In

fact, (3) are equivalent to

–.jw13: = ~&] ~n]n[~l

n

–jtiD, = ~ x~n)~(n)q.) (5)

n

and the last two equations of (1) may be transformed into

(6)

(7)

the cross-

section plane of the waveguide. i.e. B-t = (B+~, B+. J* etc. The
—* —*expressions of the different coefficient matrices &t, Et, . . . are

given in Appendix B. Eliminating V,,(m, and 1,,,[~] in (2)

by using (6), we+may express the right hand side of (2) by

fit, l?,, B+’, and D,z after substituting (7) into them. These field

components are then transformed into expressions of II[nl and

II(n) through the first four equations of (1) and (5). By this
way we may obtain all the transfer coefficients, containing

only simple integrations and the propagation constact /3 will

be easily solved by numerical calculation. In the following

we shall take the chiral waveguide as an example. It is known

that there are different constitutive relations of chiral materials

[11]-[13] and a detailed discussion of them is given in [12],

[13]. However, the various constitutive equations have been

shown to be equivalent to each other for time-harmonic fields

[12]. Here we take the following form of the constitutive

relations to derive the expressions for chirowaveguide. This

choice is arbitrary and it is easy to make the same derivations

by using other types of constitutive relations. In this case, we

have

By using the proposed procedure the coupled-mode equations

for waveguide filled with nonmagnetic chiral materials (i.e. K

is constant across the waveguide) may be readily obtained as

follows:

~v(~)_ _ E( z(rn)(n)~(n)+ T/:)(n)v(.) + ‘tkzl%
dz–n )

*__ E( y(m)(n)V(n)+ ~lm)[n]%(l–n

+ T&(~)@ + T:m)[&]
)

d~fm] =
–z[m] [m] ~[m] – x( ‘~~][n]qnl + ‘~;](n)v(n)

dz )
n

%..
E(

Y[m] [n]q.] + Yrnl (n) v(~)
dz–n

+ TL][?J[74 + qL](n)@ )
(9)

form =0,1,2,.. ., and

z(m)(n)= WP + //( )X~m)X~n)H(n)n(m) /.l’7UE ‘s

‘[m] [m] = .’jw&!

/./ (q.) ~q?n) ~~(~)‘win) &,

‘(m)(n) “ .7W ‘C m= + ‘—h@v }L@V )

Y(rn)[n]= ~ln](m)

L/ (q-l] ~qm) W~l W~~) ds= jw Ec —————
h28v hltlu fl~th }L@’V )

H (‘qn] ‘qm] +
Y[rn][.]= ~w

q.] ~q?n]d.

‘c hltlu }LI&U /L@V h2iA] )

+ Xfm]xfn]

/7
(QI[n]fI[m]/e)ds

.jwp

q:)(n)=T(m)(n)

/./ ( q.) ~qm) ~s,m(n) fqrr) —
= Wp (c ‘—

hltlu h2tb h2tk }118U )

q:] [n]= T~l ~nl

// (~qn]qn] 8%1 a“[~l ds,= —up L ‘— ‘—
h28v hltk – hldu hzdv )

–q;](n)= (nTI )[nl]

/7 ( ~qn) ~qn]~s,
m(n) q.] + __

= W,u ‘(c‘—
hltk hltk hzi?ll hzdll )
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// (m[n] m(m) + m[n] (m(m)
= up & ‘— ‘—

hldu hldu h28v h2t3v )

where CC = ~ + pf~. Equations (9) and (10) are rigorous,

without approximation. They are valid for cases where & and ~

change across the cross-section of the waveguide. From (9) and

(10) it is clear that the features of the coupled-mode equations

for the chiral case are:

1)

2)

3)

The transfer impedances Z and the transfer admit-

tance Y of the chirowaveguide are the same as if the

waveguide is filled by achiral materials with dielectric

constant CC.

All eight voltage and current transfer coefficients Tv

and Tr are not equal to zero and are proportional to

&. This means that the mode coupling effect due to

the chirality is present mostly through the 2’1’ and T1

transfer coefficients.

The coupled-mode behavior of chirowaveguides is simi-

lar to the longitudinal magnetized ferrite ~aveguide [17]

and the coupling coefficients are of the same form for

these two cases. The main difference is that the coupling

in chirowaveguides is present through coefficients Tv

and TI, and in ferrite waveguides through coefficients

z.
The coupled wave equations of ferrite waveguides were

studied in [17] (for longitudinal magnetized case) and [18]

(for transversely magnetized case), hence we shall not discuss

them here.

Before performing the calculation of Faraday (ferrite) chiral

waveguides, their constitutive relations should be examined

first. Nevertheless, the study of the constitutive relations of

this material is beyond the scope of this work. Moreover, at

present the Faraday chiral material is a conceptual medium.

Hence we restrict our study only to make some calculations

on this type of waveguides for the purpose to demonstrate

the effectiveness of the proposed method of calculation. In

reference [16] the constitutive relations of Faraday (ferrite)

chiral material are given by

E = El?+ j(c;d

5 = EE – j<c~ti + (C2 ;E. (11)

In this paper we consider the longitudinally magnetized

case, namely

~ = #l(tiii + ’00) – jpa(iifi – fiti) + p.z; (12)

and fil = B%. Applying the proposed method of solution,

we may obtain the coupling coefficients which consist of

the transfer impedances Z of the ferrite case (longitudinally

magnetized), the transfer coefficients T of the chiral case,

some terms of T which are proportional to the product

&w~ and some terms of the transfer admittances Y which
2 For comparison, theare proportional to the product K.&C.

following constitutive equations are also used:

(13)

and the expressions of permeability tensor remain the same

as (12). The latter constitutive relations (13) also satisfy the—
conditions of energy conservation [23], namely ~ = ~+

in (4) where superscript + denotes transpose and complex

conjugate. This set of constitutive relations is consistent with

the Condon’s equations [12] and tends toward the former

if the higher order terms p.& and pa~~ in (11) may be

neglected. For this set of constitutive conditions (13) the

coupling coefficients are simply the combination of the ferrite

case (transfer impedances Z) and the chiral case (transfer

coefficients T). Some numerical calculations using the above

two set of constitutive relations will be given in the next

section.

III. NUMERICAL RESULTS OF CHIRAL

AND FARADAY CHIRAL WAVEGUIDES

The validation of the calculation for waveguides filled with

ferrite samples of complicated configuration by using coupled

wave equations was performed in [18] and here we shall

validate the computation of chiral waveguide case. To this

end we perform the study of a circular waveguide of radius

R, homogeneously filled with a chiral medium of relative

scalar perrnittivity c1 = e/c. = 1, relative scalar permeability

U1 = LJ/LLO = 1, and chiral admittance & = 1 mS and bounded

by a perfect electric conductor. The calculation applies to the

fundamental HE1,l and higher order EHO,l modes as shown

in Fig. 1 together with the results obtained from reference

[3]. It is clear that good agreement exits between the various

results and they are also consistent with the results in [14]

and the experimental ‘findings in [15]. In reference [3] the

circular dielectric chirowaveguide of radius R is modeled by

a finite region extending to p x 5 R that is terminated with a

PEC wall. This problem has been simulated by the proposed

method to check its effectiveness. The material parameters are

the same as in [3]: c1 = 1.1, pl = 1, C2 = p2 = 1 and

& = 1 mS. The calculated results are shown in Fig. 2. It is

clear that our results are in good agreement with [3]. When

the radius of the waveguide R becomes larger, the agreement

becomes worse. This may be due to the field configurations of

the waves along the circular open chirowaveguides are quite

different from the fields of the empty reference waveguide

and the present method appears less efficient. A further study

of the propagation characteristics of rectangular waveguide,

with dimensions a x b, homogeneously filled with a chiral

medium of the same parameters as the circular waveguide

case in Fig. 1, is performed and the calculated dependence

of the propagation constant of the fundamental mode ,# with
respect to b/A. for different values of ~. (where a/AO is fixed

to be 0.7 and A. is the wavelength in free space) are shown

in Fig. 3. It is observed that the phase shift of the chiral case

with respect to the achiral one is strongly dependent on the

height of the waveguide b and the chirality <c, in spite of

the fact that the phase constant and the field configuration
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koR
Fig, 1, Dispersion relations for the fundamental HEI, I and higher order
EHo, 1 modes in the circular chirowaveguide. —: our results: + + ++: data

from [3],

of the fundamental mode are independent of b for the achiral

case. This -phenomenon is similar to the ferrite case—the phase

shift of the longitudinal magnetized rectangular waveguide

ferrite phase shifter remains insignificant when the height of

the waveguide b is small and it increases very fast when the

dimension b and the magnetizing field increase [21], [22].

Calculations for the Faraday (ferrite) chiral waveguides are

performed by using the constitutive relations (11) and the

calculated results for the circular waveguide case are plotted in

Fig. 4. The nondiagonal element of the permeability tensor of

the longitudinally magnetized Faraday (ferrite) chiral material

w. /po equals +0.25 and the diagonal components of the
permeability tensor are all equal to /LI. The other material

parameters are the same as in Fig. 1. It is observed that

the change of the propagation constant of f1131, 1 mode for

w. /Ko = +0.25 is rather large and on the contrary, it appears
small for HE_l,l mode. The criterion in classifying the modes
in Faraday third waveguide is the same as in the chiral

or ferrite waveguides, namely, ~~-modes become H-modes

when pa and & tend to zero and so on. It should be pointed out

that the values of the propagation constants in this case remain

unchanged if we change the signs of p. and & simultaneously

and exchange the mode number, namely HE. 1,1 --+ HE1, 1

and HE1l _ HE–l,l.

The curves of the same waveguide with the constitutive

relations (13) are plotted in Fig. 5 for comparison where the

values of c, p and (C are the same as in Fig. 4. This comparison

will show the effect of the higher order terms K,,& and puf~

in (11). It is seen that the general tendencies of the curves in
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L.3 -
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ii

G?-

fl -

lLI , I , , , I , t 1 , , , I
1 M 25 3

koi
Fig. 2. Dispersion relations for the fundamental HE1, I mode m the circnlar
dielectric chirowaveguide. —: our results: + + ++: data from [s1.
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Fig. 3. Dependence of the propag~tion constant 13/L+o of the fundamental
mode on the waveguide height b/A. in the rectangular chkowaveguide with
the chirality <c as parameter.

Figs. 4 and 5 are the same but the differences of propagation

constants of HE1l and HE–ll modes for p. /Ko = +0.25 in

Fig. 5 are much nearer to each other than in Fig. 4.
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Fig. 5. Dispersion relations for the fundamental HE1, 1 modes in the circular
Faraday (ferrite) chwowaveguide with pa/p o = +0.25, f. = 1 mS and
constitutive relations (13) for comparison. The dotted lines are with cc = O.

To demonstrate the effectiveness of this method, the con-

vergence characteristics of the calculation of Faraday (ferrite)

chiral waveguide, chirowaveguide and dielectric chirowave-

TABLE I

CONVERGENCECHARACTERISTICSOF THE CALCULATION OF THE
PROPAGATIONCONSTANT ~/ kO OF HEI, 1 MODE OF FARADAY (FERRITE)

CHIRAL CIRCULAR WAVEGUIOES WITH kO R = 2.0, e = 1.0

N 2 3 4 5 6 12 24

&=lmS p.=-o.5 1.2481 1.2549 1.2582 1.2602 1.2616 1.2650 1.2668

f&=o.5 0.5416 0.5456 0.5479 0.5494 0.5504 0.5531 0.5546

fe=2mS Pa=-o.5 2.1914 2.2077 2.2152 2.2196 2.2225 2.2297 2.2333

pa=o.5 0.9186 0.9276 0.9325 0.9356 0.9377 0.9433 0.9462

tc=2mS JJ.=-O.75 2.4752 2.4930 2.5011 2.5059 2.5090 2.5167 2.5205

/&=o.75 0.5479 0.5562 0.561O 0.5641 0.5663 0.5721 0.5751

TABLE II

CONVERGENCECHARACTERISTICSOF THE CALCULATION OF THE

PROPAGATIONCONSTANT B/ kO OF HE1, 1 MODE OF CHIRAL
CIRCULAR WAVEGUIDES WITH c = 1.0 AND <c = 1 ms

~

koR=3.6 1.3014 1.3025 1.3030 1,3032 1.3034 1.3039 1.3041

kOR=4.0 1.3288 1.3298 1.3302 1.3304 1.3305 1,3309 1,3311

TABLE III

CONVERGENCECHARACTERISTICSOF THE CALCULATION OF THE
PROPAGATIONCONSTANT fif k. OF HE1, 1 MODE OF CIRCULAR

DIELECTRIC CHIROWAVEGUIDESWITH eI = 1.1 AND & = 1 ms

r 1 1 1 i 1 1 1 (

mYEEt33k.R=3 6 1.1759 1.2636 1.3184 1.3466 1.3575 1.3562 13570

kOR=4.0 1.1829 1.2750 1.3328 1.3624 1.3736 1.3706 1.3714

guide with circular cross-section are shown in Table I, II,

and III, respectively. The total number of modes used in the

calculation equals 4 x IV, where N is the largest number of

variation of fields along the radius of the waveguide for the

highest order mode considered in the calculation. Comparing

the data of N = 3, 6, 12 and 24, we may find out that

the convergence is good and the differences in convergence

behavior for different cases are not significant. Nevertheless,

it is clear that the convergence of the chirowaveguide case

(Table II and III) is better then the Faraday (ferrite) chiral

case (Table I) and differences of results of various values of

N are smaller when the parameters ~. and ~. become small

(see Table I). This is quite reasonable. Generally speaking, for

practical calculation it is sufficient to put N = 5 or 6, i.e. a

total of 20 or 24 modes are considered.

IV. CONCLUSION

The generalized coupled-mode equations for general bi-

anisotropic wave guides are studied and derived. This method
of calculation is very effective, flexible, simple and suitable

to the most general bi-anisotropic material cases. This method

of calculation is especially useful when we need to compute

different cases, containing different kinds of materials (such

as ferrite, chiral, Faraday chiral etc.) because this method

needs only a modification in the relevant transfer coeffi-
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cients in the coupled-wave equations in the computation. The

case of waveguides, inhomogeneously filled with different bi-

anisotropic materials can also be solved by using this method.

To demonstrate its effectiveness the cases of Faraday (ferrite)

chiral and chiral waveguides with both circular and rectangular

cross-sections are studied and calculated curves are given,

Interesting and practical important features of new cases are

discovered and discussed.

APPENDIX A

In this appendix we shall show that (1) applies to any

waveguide filled with a general bi-anisotropic medium and

having PEC walls. The problem of electromagnetic field repre-

sentations in spatially inhomogeneous bianisotropic media are

investigated in [9]. It is shown that t he solution of Maxwell’s

equations can be reduced to the solution of a set of partial

differential equations for four scalar potentials from which the

fields can be derived. The tangential electromagnetic fields

can be represented by this four scalar potentials as follows

[9, (14)]:

E’(u,w)= VVP(ZL>V) + [v’ x @(u,v)z’]

Zi’(u, w)= VY(U, W) + [v~ x !V(ZL’U)2]. (Al)

It is clear that these two equations are identical to the

first four equations in (1) after the substitutions @ +

Zn(~n)H(n)), o + ~n(qn]rqn]), ‘r - En(I[n]rI[n])

and V ~ ~ ~ (V(n) II(n)). The longitudinal components

Ez and Hz can be solved by substituting the tangential

field components into Maxwell’s equations, By simple

common sense it is also clear that the most general

representation of the expansions of the six field components

may be expressed by six scalar potentials and no more is

needed, (1) is exactly the case where six set of potentials

xn(qn)~(n)))Xn(vin]%])lzn(~(n)~(n))l2(1[.]%])>
zm(v~,(n)~(n) ) and ~~ (~~.[~]~[~1 ) are present. The expan-
sions in (1) is completely different from the so-called TE-to-z

and TM-to-z decompositions which proved not possible in

general chiral and biisotropic media by many references such

as [8]. These decompositions mean that the electromagnetic

fields may be expressed by using the sum of either single

electric or single magnetic Hertz scalar potential function

(H(n) or HI~l). In contrary to this, we have six scalar potentials
instead of one in (1). Moreover, here we use the Hertz scalar

functions only because these functions are very familiar to

us, for example, in rectangular or circular waveguides filled

with homogeneous achiral isotropic materials these potentials

are related to the well-known E- and H-modes in these

waveguides. In fact, we may take other forms of expansions

instead of using Hertz potentials, only if they are convenient

for us. The reference waveguides whose Hertz potentials

are used in (1) may also be different. Nevertheless, for

convenience we usually choose the waveguides with the same

configurations as the bi-anisotropic one but filled with air. This

choice fulfils the boundary conditions required and makes the

Hertz potentials very simple to improve the efficiency of the

numerical calculation.

As for the completeness of the representations in (1), it

may be checked by the features of convergence and accuracy

tests in the numerical calculation. The numerical examples

of this paper show that both of these two features are very

satisfactory and hence the completeness of the representations

in (1) should be of no problem. Generally speaking, the

boundary conditions and the differential equations ruling the

bi-anisotropic problem and the isotropic problem are the

same, the difference lies only in the constitutive relations,

namely, the relationship between 1?, D and E, H. Therefore,

it is reasonable to construct the solution of the bi-anisotropic

case from the sum of the solutions of the isotropic case.

The effectiveness of the solution of different waveguides,

inhomogeneously filled with dielectrics and gyrotropic ferrites

in the literature also proves that the expansions in (1) are

adequate.

APPENDIX B
—

After partition the tensors ~. ~, ~ and ~ in (4) we have the

with
,, ==,,

(B2

and so forth. Solving for E-z and H-z from the last two

equations of (B-1) and substituting them into the first two,

we may obtain the following expressions for (7):

2 = z + [ME – %;’) + 72(<22;’– Lhf:)l/~
— — — ——

2 = ii+ [a?z.c~ – ~zza + FZ(fx – Pzzez)l/a
— — — — — —— —
E; = Q + [Ez (fzzq= – f’Jzz~’) + larl,zc= – %7i7]/a

E = z + [Z(%2F - k;’)+ w.;’ - Lkal/~
(B3)

and

Xz = (–F.%.+ ~z/-k:)/~

— ——
T:t = (?)2,.2—&zz7/z)/a!

. —

P:t= (LF – /.Lzz[z)/a
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/Vz = Ezz 0!

42= –mzl~
<z= kzl~

w, = –&z/ck (B4)

where a = ezzpZZ — Tjzz(ZZ and the only condition for this

transform is a # O.
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