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An Efficient Method for Study of General
Bi-Anisotropic Waveguides

Yansheng Xu, Member, IEEE, and Renato G. Bosisio, Senior Member, IEEE

Abstract—In this paper, coupled-mode equations for general bi-
anisotropic waveguides with perfect electrically conducting (PEC)
walls are studied and a set of rigorous expressions is obtained.
The features of these equations are discussed and applications
to circular/rectangular Faraday chiral and chiral waveguides are
demonstrated. Comparisons between Faraday chiral, chiral, and
ferrite-filled waveguides are also given.

1. INTRODUCTION

NEW CLASS of waveguides, known as chirowaveguides

exhibit novel and unique properties, and they have been
studied intensively in recent years. In spite of numerous
papers published on this subject [1]-[8], [14], [15], only
very few cases have been reported in detail. Moreover, the
newly suggested Faraday chiral [16] and general bi-anisotropic
waveguides are more complicated to calculate in spite of the
fact that they have many interesting properties and potential
applications. In reference [24], calculation of circular open
chirowaveguides is made by using coupling mode expansion
method. Their results are valid only for small chirality cases
since the formulas used in {24] are derived with perturbation
approximation of small chiral admittance. In this paper, we
give arigorous study of the coupled-mode equations of general
bi-anisotropic waveguides with PEC walls including chiral and
Faraday chiral waveguides in special cases. It is shown by
sample calculations that this rigorous method is very effective
to calculate results of both circular and rectangular chiral
and Faraday chiral waveguides with various values of chiral
admittance and off-diagonal component of permeability tensor.
A comparison is also made between chirowaveguides and
ferrite-filled waveguides.

II. THEORY

The electromagnetic field components of a metal wave-
guide, filled with bi-anisotropic materials may be expressed
as follows [17]:
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where u, v are orthogonal coordinates of a point in a typical
cross-section of the waveguide, z is the axis of the waveguide,
Iy and I}, are the Hertz scalar functions of the TM and
TE modes of the same waveguide filled with homogeneous
isotropic achiral materials, h; and hy are the metrical coeffi-
cients, the Vs and I's correspond to the voltages and currents
in the coupled-mode waveguide. In fact, (1) is the expansion
of the six field components separately into the summation
of the eigenmode components of the same waveguide filled
with homogeneous isotropic achiral material (There are six
different sets of coefficients V(y), Vi), ... in the expansion.)
Of course, there are many possible ways to expand the six
field components. Nevertheless, the above expansion gives a
clear physical meaning and it makes the field calculations more
convenient. The proposed method was successfully used and
validated both theoretically and experimentally in the study of
ferrite waveguides [17], [18]. Here we shall extend it to the
study of bi-anisotropic waveguides, including chirowaveguides
and Faraday chiral waveguides presented as special cases. A
detailed discussion of expansion (1) is given in Appendix A.
From (1) and Maxwell’s equations it is found that [17]
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I(m) = —jw//D;H(m)dS 3)

for m = 0,12, ...
where the surface integrals are performed across the cross-
section of the waveguide.

The variation of the field components in the axial direction
z is given by exp(—jfBz). The constitutive relations in a
most general bi-anisotropic medium for an assumed time
dependence of the form exp(jwt) are given by [19]

D=¢E+¢H 4)

In principle, we may follow [17] to substitute (4) into (2),

(3) and obtain all the transfer coefficients of the generalized

coupled mode equations Z’s, Y’s, and T s which relate
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To thlS end we have to substitute the expressions of B and
D. (which in general case are dependent on all the six field
components E,, E,, E.. H,, H,, and H) into (3); solve for
V. m) and I, 1, and eliminate them in (2). This is really a
very complicated task, since the two infinite series of VL(m)
and I |, are coupled to each other. Therefore, the following
procedure is proposed to make our calculation practical. In
fact, (3) are equivalent to

—jwD. = Zx%n)-[(n)n(n) )

and the last two equations of (1) may be transformed into

I m] = 3( //H H[md

From (4) it is easy to obtain
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where ﬁt,ﬁt,ﬁt,ﬁt are the field components in the cross-
(BZ,Bj,)t etc. The
expressions of the different coefficient matrices uj, €7, ... are
given in Appendix B. Eliminating V, () and I [, in (2)
by using (6), we may express the right hand side of (2) by
H, E;, B..and D. after substituting (7) into them. These field
components are then transformed into expressions of IIj,,; and
II(,) through the first four equations of (1) and (5). By this
way we may obtain all the transfer coefficients, containing
only simple integrations and the propagation constact J will
be easily solved by numerical calculation. In the following
we shall take the chiral waveguide as an example. It is known

section plane of the waveguide, i.e. B, =

that there are different constitutive relations of chiral materials
[11]-[13] and a detailed discussion of them is given in [12],
[13]. However, the various constitutive equations have been
shown to be equivalent to each other for time-harmonic fields
[12]. Here we take the following form of the constitutive
relations to derive the expressions for chirowaveguide. This
choice is arbitrary and it is easy to make the same derivations
by using other types of constitutive relations. In this case, we
have

B= Nﬁ + jfcﬂﬁ
D=¢FE jgclle ®)

By using the proposed procedure the coupled-mode equations
for waveguide filled with nonmagnetic chiral materials (i.e. 1
is constant across the waveguide) may be readily obtained as
follows:
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where ¢, = € + p&2. Equations (9) and (10) are rigorous,

without approximation. They are valid for cases where &, and €
change across the cross-section of the waveguide. From (9) and
(10) it is clear that the features of the coupled-mode equations
for the chiral case are:

1) The transfer impedances Z and the transfer admit-
tance Y of the chirowaveguide are the same as if the
waveguide is filled by achiral materials with dielectric
constant ¢..

2) All eight voltage and current transfer coefficients 77V
and T7 are not equal to zero and are proportional to
&.. This means that the mode coupling effect due to
the chirality is present mostly through the 7% and T
transfer coefficients.

3) The coupled-mode behavior of chirowaveguides is simi-
lar to the longitudinal magnetized ferrite waveguide [17]
and the coupling coefficients are of the same form for
these two cases. The main difference is that the coupling
in chirowaveguides is present through coefficients 7V
and T7, and in ferrite waveguides through coefficients
Z.

The coupled wave equations of ferrite waveguides were
studied in [17] (for longitudinal magnetized case) and [18]
(for transversely magnetized case), hence we shall not discuss
them here.

Before performing the calculation of Faraday (ferrite) chiral
waveguides, their constitutive relations should be examined
first. Nevertheless, the study of the constitutive relations of
this material is beyond the scope of this work. Moreover, at
present the Faraday chiral material is a conceptual medium.
Hence we restrict our study only to make some calculations
on this type of waveguides for the purpose to demonstrate
the effectiveness of the proposed method of calculation. In
reference [16] the constitutive relations of Faraday (ferrite)
chiral material are given by

11

In this paper we consider the longitudinally magnetized
case, namely
= p (Ut + 90) — jua(4d — 94) + pe22  (12)
and p1 = p.. Applying the proposed method of solution,
we may obtain the coupling coefficients which consist of
the transfer impedances Z of the ferrite case (longitudinally
magnetized), the transfer coefficients 1" of the chiral case,
some terms of 7' which are proportional to the product
& e and some terms of the transfer admittances Y which
are proportional to the product p,&2. For comparison, the

following constitutive equations are also used:

B= uH + jEpoE
D = 6c JGC/J'OH

and the expressions of permeability tensor remain the same
as (12). The latter constitutive relations (13) also satisfy the

(13)

conditions of energy conservation [23], namely £ = 75
in (4) where superscript + denotes transpose and complex
conjugate. This set of constitutive relations is consistent with
the Condon’s equations [12] and tends toward the former
if the higher order terms pg.€. and p,€? in (11) may be
neglected. For this set of constitutive conditions (13) the
coupling coefficients are simply the combination of the ferrite
case (transfer impedances Z) and the chiral case (transfer
coefficients 7). Some numerical calculations using the above
two set of constitutive relations will be given in the next
section.

III. NUMERICAL RESULTS OF CHIRAL
AND FARADAY CHIRAL WAVEGUIDES

The validation of the calculation for waveguides filled with
ferrite samples of complicated configuration by using coupled
wave equations was performed in [18] and here we shall
validate the computation of chiral waveguide case. To this
end we perform the study of a circular waveguide of radius
R, homogeneously filled with a chiral medium of relative
scalar permittivity €; = ¢/¢g = 1, relative scalar permeability
w1 = i/ e = 1, and chiral admittance £, = 1 mS and bounded
by a perfect electric conductor. The calculation applies to the
fundamental H F; ; and higher order £ Hp ;1 modes as shown
in Fig. 1 together with the results obtained from reference
[3]. It is clear that good agreement exits between the various
results and they are also consistent with the results in [14]
and the experimental 'findings in [15]. In reference [3] the
circular dielectric chirowaveguide of radius R is modeled by
a finite region extending to p ~ 5 R that is terminated with a
PEC wall. This problem has been simulated by the proposed
method to check its effectiveness. The material parameters are
the same as in [3]: e = 1.1, py = 1, €2 = py = 1 and
£, = 1 mS. The calculated results are shown in Fig. 2. It is
clear that our results are in good agreement with [3]. When
the radius of the waveguide R becomes larger, the agreement
becomes worse. This may be due to the field configurations of
the waves along the circular open chirowaveguides are quite
different from the fields of the empty reference waveguide
and the present method appears less efficient. A further study
of the propagation characteristics of rectangular waveguide,
with dimensions a X b, homogeneously filled with a chiral
medium of the same parameters as the circular waveguide
case in Fig. 1, is performed and the calculated dependence
of the propagation constant of the fundamental mode 3 with
respect to b/ Ay for different values of &, (where a/A is fixed
to be 0.7 and Ag is the wavelength in free space) are shown
in Fig. 3. It is observed that the phase shift of the chiral case
with respect to the achiral one is strongly dependent on the
height of the waveguide b and the chirality £,, in spite of
the fact that the phase constant and the field configuration
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Fig. 1. Dispersion relations for the fundamental HF; 1 and higher order
FEHg 1 modes in the circular chirowaveguide. —: our results: + 4 4+: data
from [3].

of the fundamental mode are independent of b for the achiral
case. This phenomenon is similar to the ferrite case—the phase
shift of the longitudinal magnetized rectangular waveguide
ferrite phase shifter remains insignificant when the height of
the waveguide b is small and it increases very fast when the
dimension b and the magnetizing field increase [21], [22].

Calculations for the Faraday (ferrite) chiral waveguides are
performed by using the constitutive relations (11) and the
calculated results for the circular waveguide case are plotted in
Fig. 4. The nondiagonal element of the permeability tensor of
the longitudinally magnetized Faraday (ferrite) chiral material
ta /o equals +£0.25 and the diagonal components of the
permeability tensor are all equal to 4;. The other material
parameters are the same as in Fig. 1. It is observed that
the change of the propagation constant of H £y ; mode for
Lo / o = £0.25 is rather large and on the contrary, it appears
small for H F/_1 ;1 mode. The criterion in classifying the modes
in Faraday chiral waveguide is the same as in the chiral
or ferrite waveguides, namely, H I/-modes become H-modes
when i, and &, tend to zero and so on. It should be pointed out
that the values of the propagation constants in this case remain
unchanged if we change the signs of 1, and &, simultaneously
and exchange the mode number, namely HE_q 1 — HEq 3
and HEl.l — HE—1,1~

The curves of the same waveguide with the constitutive
relations (13) are plotted in Fig. 5 for comparison where the
values of ¢, 1 and &, are the same as in Fig. 4. This comparison
will show the effect of the higher order terms ,&. and p,&2
in (11). It is seen that the general tendencies of the curves in
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Fig. 2. Dispersion relations for the fundamental H F+ ; mode m the circular
dielectric chirowaveguide. —: our results; + + +-: data from [3].
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Fig. 3. Dependence of the propagation constant ;3/ko of the fundamental

mode on the waveguide height b/A¢ in the rectangular chirowaveguide with
the chirality £, as parameter.

Figs. 4 and 5 are the same but the differences of propagation
constants of HEy; and HE_ 13 modes for i, /pp = £0.25 in
Fig. 5 are much nearer to each other than in Fig. 4.
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Fig. 4. Dispersion relations for the fundamental H E1 1 modes in the circular
Faraday (ferrite) chirowaveguide with pa/po = £0.25, £, = 1 mS and
constitutive relations (11). The dotted lines are with £ = 0 for comparison.

& =1mS

15

125

LA S 20 S B e Bae SN San S mam u |

Beta/ko
=)
by
T

o
o

025

T T T

Fig. 5. Dispersion relations for the fundamental H 1 1 modes in the circular
Faraday (ferrite) chirowaveguide with po/po = £0.25, & = 1 mS and
constitutive relations (13) for comparison. The dotted lines are with £ = 0.

To demonstrate the effectiveness of this method, the con-
vergence characteristics of the calculation of Faraday (ferrite)
chiral waveguide, chirowaveguide and dielectric chirowave-

TABLE 1
CONVERGENCE CHARACTERISTICS OF THE CALCULATION OF THE
PROPAGATION CONSTANT 3/ko OF H Ey 1 MODE OF FARADAY (FERRITE)
CHIRAL CIRCULAR WAVEGUIDES WITH ko R = 2.0, ¢ = 1.0

N 2 3 4 5 6 12 24

£=1mS | p,=-0.5 {1.2481 | 1.2549 | 1.2582 | 1.2602 | 1.2616 | 1.2650 | 1.2668

1,=0.5 | 0.5416 | 0.5456 | 0.5479 | 0.5494 | 0.5504 | 0.5531 | 0.5546

£=2mS | p,=-0.5 | 2.1914 | 2.2077 | 2.2152 | 2.2196 | 2.2225 | 2.2297 | 2.2333

1.=0.5 | 0.9186 | 0.9276 | 0.9325 | 0.9356 | 0.9377 | 0.9433 | 0.9462

£=2mS | p,=-0.75 | 2.4752 | 2.4930 | 2.5011 | 2.5059 | 2.5090 | 2.5167 | 2.5205

0.5479 | 0.5562 | 0.5610 | 0.5641 | 0.5663 | 0.5721 | 0.5751

12=0.75

TABLE II
CONVERGENCE CHARACTERISTICS OF THE CALCULATION OF THE
PROPAGATION CONSTANT 3/kg OF H E; 1 MODE OF CHIRAL
CIRCULAR WAVEGUIDES WITH € = 1.0 AND . = 1 ms

N 2 3 4 5 6 12 24

koR=3.6 | 1.3014 | 1.3025 | 1.3030 | 1.3032 | 1.3034 | 1.3039 | 1.3041

koR=4.0 | 1.3288 | 1.3298 | 1.3302 | 1.3304 | 1.3305 | 1.3309 | 1.3311

TABLE Il
CONVERGENCE CHARACTERISTICS OF THE CALCULATION OF THE
PROPAGATION CONSTANT 3/ko OF HE7 1 MODE OF CIRCULAR
DIELECTRIC CHIROWAVEGUIDES WITH € = 1.1 AND §. = 1 ms

N 2 3 4 5 6 12 24

koR=36 | 1.1759 | 1.2636 | 1.3184 | 1.3466 | 1.3575 | 1.3562 | 1 3570

koR=4.0 | 1.1829 § 1,2750 | 1.3328 | 1.3624 | 1.3736 | 1.3706 | 1.3714

guide with circular cross-section are shown in Table I, II,
and III, respectively. The total number of modes used in the
calculation equals 4 x N, where IV is the largest number of
variation of fields along the radius of the waveguide for the
highest order mode considered in the calculation. Comparing
the data of N = 3, 6, 12 and 24, we may find out that
the convergence is good and the differences in convergence
behavior for different cases are not significant. Nevertheless,
it is clear that the convergence of the chirowaveguide case
(Table II and III) is better then the Faraday (ferrite) chiral
case (Table I) and differences of results of various values of
N are smaller when the parameters £, and u, become small
(see Table I). This is quite reasonable. Generally speaking, for
practical calculation it is sufficient to put N = 5 or 6, i.e. a
total of 20 or 24 modes are considered.

IV. CONCLUSION

The generalized coupled-mode equations for general bi-
anisotropic wave guides are studied and derived. This method
of calculation is very effective, flexible, simple and suitable
to the most general bi-anisotropic material cases. This method
of calculation is especially useful when we need to compute
different cases, containing different kinds of materials (such
as ferrite, chiral, Faraday chiral etc.) because this method
needs only a modification in the relevant transfer coeffi-
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cients in the coupled-wave equations in the computation. The
case of waveguides, inhomogeneously filled with different bi-
anisotropic materials can also be solved by using this method.
To demonstrate its effectiveness the cases of Faraday (ferrite)
chiral and chiral waveguides with both circular and rectangular
cross-sections are studied and calculated curves are given.
Interesting and practical important features of new cases are
discovered and discussed.

APPENDIX A

In this appendix we shall show that (1) applies to any
waveguide filled with a general bi-anisotropic medium and
having PEC walls. The problem of electromagnetic field repre-
sentations in spatially inhomogeneous bianisotropic media are
investigated in [9]. It is shown that t he solution of Maxwell’s
equations can be reduced to the solution of a set of partial
differential equations for four scalar potentials from which the
fields can be derived. The tangential electromagnetic fields
can be represented by this four scalar potentials as follows
[9, A4)]:

Et(u,v) = V'®(u,v) + [V* x O(u,v)7]
Z

—

Hi(u,v) = VY (u,0) + [VE x ¥(u,0)Z].  (AD
It is clear that these two equations are identical to the
first four equations in (1) after the substitutions & —
2 Ve Ie), © — 50, (Vi ), T — 32, (Il m))
and ¥ — > (Vin)I(ny). The longitudinal components
E, and H, can be solved by substituting the tangential
field components into Maxwell’s equations. By simple
common sense it is also clear that the most general
representation of the expansions of the six field components
may be expressed by six scalar potentials and no more is
needed. (1) is exactly the case where six set of potentials
YoV imyl(ny) and 37 (L. [1l},)) are present. The expan-
sions in (1) is completely different from the so-called TE-to-z
and TM-to-z decompositions which proved not possible in
general chiral and biisotropic media by many references such
as [8]. These decompositions mean that the electromagnetic
fields may be expressed by using the sum of either single
electric or single magnetic Hertz scalar potential function
(IL(y or I,)). In contrary to this, we have six scalar potentials
instead of one in {1). Moreover, here we use the Hertz scalar
functions only because these functions are very familiar to
us, for example, in rectangular or circular waveguides filled
with homogeneous achiral isotropic materials these potentials
are related to the well-known FE- and H-modes in these
waveguides. In fact, we may take other forms of expansions
instead of using Hertz potentials, only if they are convenient
for us. The reference waveguides whose Hertz potentials
are used in (1) may also be different. Nevertheless, for
convenience we usually choose the waveguides with the same
configurations as the bi-anisotropic one but filled with air. This
choice fulfils the boundary conditions required and makes the
Hertz potentials very simple to improve the efficiency of the
numerical calculation.

As for the completeness of the representations in (1), it
may be checked by the features of convergence and accuracy
tests in the numerical calculation. The numerical examples
of this paper show that both of these two features are very
satisfactory and hence the completeness of the representations
in (1) should be of no problem. Generally speaking, the
boundary conditions and the differential equations ruling the
bi-anisotropic problem and the isotropic problem are the
same, the difference lies only in the constitutive relations,
namely, the relationship between B, D and E, H. Therefore,
it is reasonable to construct the solution of the bi-anisotropic
case from the sum of the solutions of the isotropic case.
The effectiveness of the solution of different waveguides,
inhomogeneously filled with dielectrics and gyrotropic ferrites
in the literature also proves that the expansions in (1) are
adequate.

APPENDIX B

After partition the tensors €., n and E in (4) we have the
following expressions:

t:/jt t+/z :+77tEt+77:: =
)y = @By + ¢, :—I—éﬁt—l'fin
_’: = _‘:ﬁt + ,U'zzﬁz + TI—:Et + 77~~E~
), = EEy ey 4 EH 4L (B1)
with
_ TS
el =) 2 (B2)
BE o ey

and so forth. Solving for E_; and ﬁz from the last two
equations of (B-1) and substituting them into the first two,
we may obtain the following expressions for (7):

M:Z‘ = i+ [ (022" — €att”) + T (Eantl? — 12 E7)]
= i [ (122 = €0s) + 1 (Eeot” = 1z
6 = + [l — pos€) + Eu(nee — €]
6 = &t [0 — Coott®) o+ E(Ents® — o)) [0
(B3)
and

Mo = (s = 1600)

Xtz = (= /I Moz + Maphes) /o0

M = (Gottae — Ea22)

e = (—€:60s + Esezz) ]

M = (028 — e2etr”) o

T:t = :,:EZZ — Ezz71:;)/0‘

N = (€t = 1)

(P:zt = (fz;l;z - lj'z,:f:z)/a
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Vy = €/
1/)2 = _'rlzz/a
Cz = sz/a

_gzz/a (B4)

w, =

where o = €., — 1,.&,, and the only condition for this
transform is o # O.

(1]
{21
B3]

{4
[51
[6

—

[y

[7

(8]

—

9

—

[10]
[i1]
[12]

(13]

[141

(15]

[16]
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